
IJSRSET151418 | Received: 17 July 2015 | Accepted: 22 July 2015 | July-August 2015 [(1)4: 114-123]

© 2015 IJSRSET | Volume 1 | Issue 4 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

114

Recent Trends comprehensive survey of Asynchronous
Network and its Significant

Ajitesh S. Baghel, Rakesh Kumar Katare

Department of Computer Science, A. P. S. Univesity, Rewa Madhya Pradesh, India

ABSTRACT

Advancement in electronics and computer architecture has opened new domains of the parallel and distributed

computing. The advent of the Multi Core CPU‟s with the blending of the open MPI techniques has given the wings

to the distributed computing with assurance of the parallelism. In this proposal, various important aspects of

asynchronous algorithms and its data structures for parallel and distributed architecture will be investigated. This

article has proposed and will examine networks of processor for asynchronous system to compute faster for more

iteration. The complexity of interprocessor communication will be investigated. Hence efficient asynchronous

algorithm is main concerned of the study for MPI systems.

Keywords: Asynchronous Network, Distributed System, Parallel Computing

I. INTRODUCTION

Advancement in electronics and computer architecture

has opened new domains of the parallel and distributed

computing. The advent of the Multi Core CPU‟s with

the blending of the open MPI techniques has given the

wings to the distributed computing with assurance of the

parallelism. Evolution and 3Gand 4G with distributed

functionality with help of the mobile agent‟s technology

has proof the significance of the autonomy of the

software code i.e. distributed nature of the agents.

Over the past few years, there have been tremendous

efforts to improve the speed and sophistication of large-

scale data-parallel processing systems [4]. Practitioners

and researchers have built a wide array of programming

frameworks [10, 11, 12, 13, 14, 15] and storage systems

[16, 17, 18, 19, 20] tailored to a variety of workloads. As

the performance of many of these systems is I/O bound,

traditional means of improving their speed is to cache

data into memory [8, 11]. While caching can

dramatically improve read performance, unfortunately, it

does not help much with write performance. This is

because these highly parallel systems need to provide

fault tolerance, and the way they achieve it is by

replicating the data written across nodes. Even

replicating the data in memory can lead to a significant

drop in the write performance, as both the latency and

throughput of the network are typically much worse than

that of local memory.

Slow writes can significantly hurt the performance of

job pipelines, where one job consumes the output of

another. These pipelines are regularly produced by

workflow managers such as Oozie [18] and Luigi [19],

e.g., to perform data extraction with Map Reduce, then

execute a SQL query and then run a machine learning

algorithm on the query‟s result. Furthermore, many

high-level programming interfaces [20, 21, 22], such as

Pig [23] and Flume Java [24], compile programs into

multiple Map Reduce jobs that run sequentially. In all

these cases, data is replicated across the network in-

between each of the steps.

The recent years encountered the development of

software standard for clusters computing. The

complexity of interprocessor communication in case of

asynchronous networks efficiency becomes a course of

studies for computer scientists and Mathematicians. The

computer scientists are try to investigate new ways to

optimize number of links and efficient message passing

mechanisms.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

115

The major constraints in asynchronous networks of

processors are:

 Load Balancing.

 Fault Tolerance/ Robustness.

 Low Latency

 High Bandwidth

 Energy Efficiency.

The emergence of distributed computation demands the

development of new architecture to counter the

challenge of new technology.

According to [5], in sequential computing, computability

is understood through the Church-Turing‟s thesis

(namely, anything that can be computed, can be

computed by a Turing machine). Moreover, when

considering the notion of a universal algorithm

encountered in sequential computing, such an algorithm

“has the ability to act like any algorithm whatsoever. It

accepts as inputs the description of any algorithm A and

any legal input X, and simply runs, or simulates, A on X.

[...] In a sense, a computer [...] is very much like a

universal algorithm [25].”.

Hence, the question: Is it possible to design a universal

algorithm/machine on top of an asynchronous crash-

prone distributed system? As we are about to see, it

happens that, due the environment (asynchrony and

process failures) of a distributed system, and the fact that

it cannot control it, distributed computability has a

different flavor than computability in sequential

computing. Moreover, this is independent of the fact that

the communication is by read/write registers or

message-passing. Due to its very nature, distributed

computing requires cooperation among the processes.

Intuitively, the computability issues come from the fact

that, due to the net effect of asynchrony and failures, a

process can be unable to know if another process has

crashed or is only slow (or equivalently if the channel

connecting these processes is slow). Moreover, this is

true whatever the individual power of each process. To

cite “It follows that the limits of computability reflect

the difficulty of making decisions in the face of

ambiguity, and have little to do with the inherent

computational power of individual participants”.

Rest of the article is organized as follow, Section II

presents the brief introduction about the distributed and

parallel computing and its evolution, Section III

discusses the recent contribution in the asynchronous

computing networks and its significant application

domain. Section IV presents proposed research idea and

the motivational factor. And finally Section V concludes

the papers with the future directions of this work.

II. METHODS AND MATERIAL

Parallel & distributed computing:

Term Network is the simplest word having the highest

complexity hidden inside. Modern era is the age of

computation; everything is depends, operated and

derived from computation. Evolution of the fast

computer‟s and CPU makes life easier, even though this

nano-integrated deice designing is one of the complex

and adept task. Abstraction is the methodology of the

software engineering to hide irrelevant details

(complexity) from the end users. Abstraction with

felling of uni-user is also termed as transparency in

distributed system.

According to Coulouris defines a distributed system as

“A system in which hardware or software components

located at networked computers communicates and

coordinates their actions only by message passing”.

Whereas according to Tanenbaum defines it as “A

collection of independent computers that appear to the

users of the system as a single computer”.

Leslie Lamport, a famous researcher on timing, message

ordering and clock synchronization in distributed

systems once said that “A distributed system is one on

which I cannot get any work done because some

machine I have never heard of has crashed”, reflecting

on the huge number of challenges faced by distributed

system designers.

The nodes in a distributed system are connected by an

interconnection network. The communication in

between nodes in the distributed system takes place by

exchanging messages. Therefore these distributed

systems are commonly known as message passing

distributed systems with contrast to shared memory

communication, which is extensively followed in

various multiprocessor and parallel systems. Some of the

distributed systems such as wireless ad-hoc networks

follow an arbitrary network topology, where the nodes

are randomly deployed in the environment. Other kind

of distributed systems such as electronic automotive

systems are extensively used in real time applications.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

116

Parallel System

It is an “A collection of processing elements that

communicate and cooperate to solve large problems

fast”. Parallel computers or systems are tightly coupled

in nature as per Flynn‟s classification.

Distributed System

It‟s an “A collection of independent computers that

appear to its users as a single coherent system.”

A parallel computer is implicitly a distributed system.

[Wiki]

A distributed system is composed of a set of machines

which do not share a global clock, the machines

communicate with each other by exchanging messages

over a communication network. Each machine in the

distributed system has its own memory and runs its own

operating system. The machines in a distributed system

offer their resources for collective computation. The

resources owned and controlled by a machine are said to

be local to it, while the resources owned and controlled

by other computers and those that can only be accessed

through the network are said to be remote. These

resources can be of various types such as computation

nodes, storage devices etc. A large number of

applications have been developed to harness the power

of distributed systems.

Typically a distributed system has the following

characteristics:

 Multiple nodes – A distributed system is composed

of multiple independent nodes belonging to different

computers, not merely multiple processors on the

same computer.

 Heterogeneity – The nodes in a distributed system

may consist of machines having different

architectures and possibly running different types of

operating systems.

 Message passing – Processes on the different

resource nodes may communicate using diverse

networking protocols over different networking

technologies. Therefore, the characteristics of the

underlying communication links can be different.

The nodes in most distributed systems are reachable

from one another.

 Concurrency – Each of the nodes in a distributed

system provides independent functionality, and

operates concurrently with other nodes

Decentralized control – No single computer is

necessarily responsible for configuration,

management, or policy control for the whole

distributed system. However, some functionality

may reside in a central node or a set of nodes by

necessity.

 Openness – Many distributed systems are open, i.e.,

an unbounded number of nodes or components can

be added or changed even while the system is

running.

The main objective of a distributed system is to achieve

high throughput for distributed applications through

concurrent computation and to increase accessibility to

resources not commonly available to a single machine.

According to author [5], Distributed computing was

born in the late seventies when researchers and

engineers started to take into account the intrinsic

characteristic of physically distributed systems [26].

Distributed computing arises when one has to solve a

problem involving physically distributed entities (called

processes, processors, agents, actors, sensors, peers, etc.),

such that each entity (a) has only a partial knowledge of

the many input parameters of the problem to be solved,

and (b) has to compute local outputs which may depend

on some non-local input parameters. It follows that the

computing entities have necessarily to exchange

information and cooperate [27].

Distributed System - A (static) distributed system is

made up of n sequential deterministic processes,

denotedp1,...,pn. These processes communicate and

synchronize through a communication medium, which is

either a network that allows the processes to send and

receive messages, or a set of atomic read/write registers

(atomic registers could be replaced by “weaker” safe or

regular registers, but as shown in [28] – where these

registers are defined– safe, regular and atomic registers

have the same computational power).

Deterministic means here that the behavior of a process

is entirely determined from its initial state, the algorithm

it executes, and –according to the communication

medium– the sequence of values read from atomic

registers or the sequence of received messages (hence,

obtaining different sequences of values or receiving

messages in a different order can produce different

behaviors).

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

117

Asynchronous Read/Write or Message-Passing

System - In an asynchronous (also called time-free)

read/write system, the processes are asynchronous in the

sense that, for each of them, there is no assumption on

its speed (except that it is positive). If the

communication is by message-passing, the network also

is asynchronous, namely, the transfer duration of any

message is finite but arbitrary.

Synchronous Message-Passing System - Differently,

the main feature of a synchronous system lies in the

existence of an upper bound on message transfer delays.

Moreover, (a) this bound is known by the processes, and

(b) it is assumed that processing durations are negligible

with respect to message transfer delays; consequently

processing are assumed to have zero duration.

This type of synchrony is abstracted by the notion of

round-based computation. The processes proceed in

rounds during which each process first sends messages,

then, receive messages, and executes local computation.

The fundamental assumption which characterizes a

synchronous message-passing system is that a message

sent during a round is received by its destination process

during the very same round.

Process Crash Failure - The most common failure

studied in distributed computing is the process crash

failure. Such a failure occurs when a process halts

unexpectedly. Before crashing it executes correctly its

algorithm, and after having crashed, it never recovers.

Let t be the maximal number of processes that may crash;

t is a model parameter and the model is called t-resilient

model. The asynchronous distributed computing

(read/write or message-passing) model in which all

processes, except one, may crash is called wait-free

model. Hence, wait-free model is synonym of (n−1)-

resilient model.

The Notion of Environment and Non-determinism –

The environment of a distributed system is the set of

failures and (a) synchrony patterns in which the system

may evolve. Hence, a system does not master its

environment but suffers it. As processes are

deterministic, the only non-determinism a distributed

system has to cope with is the non-determinism created

by its environment.

Complexity vs. Computability Issues - Computability

and complexity are the two lenses that allow us to

understand and master computing. The following table

presents the main issues encountered in distributed

computing, when considering these two lenses.

 Synchronous Asynchronous

Failure free complexity Complexity

Failure-

prone

complexity computability

Advantages:

• Higher price/performance ratio – By

interconnecting powerful workstations with high

speed communication network we achieve higher

performance at lower cost.

• Resource sharing – A node in a distributed system

can access both software and hardware resources of

another node remotely over the communication

network.

• Improved availability – A distributed computing

system provides improved reliability and availability

because a few components of the system can fail

without affecting the availability of the rest of the

system.

• Improved reliability – By replicating data and

services the distributed systems can be made fault

tolerant Distributed systems have been used for a

wide variety applications ranging from scientific

simulations collaborative engineering,

supercomputer enabled scientific instruments,

applications in Geographical Information Systems

(GIS) like weather prediction, railway or airline

reservation systems etc.

Distributed systems are composed of multiple

computing resources connected by communication links.

Since failure of nodes and links are assumed to be

independent, larger the system, higher is its probability

of failure. Therefore, in a distributed system, failures are

relatively common events. Distributed systems should

remain at least partially available and functional even if

some of their nodes or communication links fail or

misbehave. Without fault tolerance mechanisms, the

system and the applications running on it need to be

restarted every time a failure occurs. Many of the

distributed applications mentioned above are long

running, taking hours or even days in some cases to

complete. If a fault occurs in the middle of a long

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

118

running application, long hours of useful computation

will be lost. Thus an application may take a long time to

complete in the presence of such failures. Fault tolerance

techniques can allow applications to run to completion

in the presence of faults with minimal disruption. Since

such techniques do not need an application to restart

when a fault occurs, they also save system resources and

improve system throughput.

Distributed Computing:

A concurrent object is an object that can be accessed by

several processes. Let us consider a concurrent object Z

defined by a sequential specification on a set of total

operations. An operation is total is, when executed alone,

it always returns a result. A specification is sequential, if

all the correct behaviors of the object can be described

by sequences of operations. The notion of universality

we are interested in concerns the possibility to

implement any concurrent object such as Z, despite

asynchrony and crashes. If it exists, such an

implementation, which takes the sequential specification

of Z as input and builds a corresponding concurrent

object, is called a universal construction. This is

depicted in Fig. 1.

Figure 1. from a Universal Specification to Wait Free Specification

depicted by [5]

In some cases the object Z encapsulates a service which

can be abstracted as a state machine. A replication-based

universal construction of such an object Z is usually

called a state machine replication algorithm [39]. Let us

remark that the object Z could also be a Turing machine.

The Consensus Object - A consensus object is a one-

shot concurrent object defined by a sequential

specification that provides the processes with a single

operation denoted propose (v) where v is an input

parameter (called proposed value”). “One-shot” means

that, given a consensus object, a process invokes at most

once the operation propose ().

If it terminates, the operation returns a result (called

“decided” value). This object can be defined by the three

following properties.

• Validity - If a process decides a value, this value has

been proposed by a process.

• Agreement - No two processes decide different

values.

• Termination - An invocation of propose () by a

process that does not crash terminates.

Consensus-Based Universal Construction - Several

universal constructions based on atomic registers and

consensus objects have been proposed, e.g., [29]. In that

sense, and as depicted in Figure 2, consensus is a

universal object to design wait-free universal

constructions, i.e., wait-free implementations of any

concurrent object defined by a sequential specification.

This is depicted in Fig. 1.2

Figure 1.2 Universal construction from atomic registers and

consensus objects [5]

Recent trends in Asynchronous Networks:

In a universal construction, consensus objects are used

by the processes to build a single total order on the

operation invocations applied to the constructed object Z.

This is the method used to ensure that the internal

representation of Z remains always consistent, and is

consequently seen the same way by all processes.

One of the most important of the theoretical results of

distributed computing is the celebrated FLP result

(named after its authors Fischer, Lynch, and Paterson)

[30]), which states that no binary consensus object (a

process can only propose v ∈ {0,1}) can be built in an

asynchronous message-passing system whose

environment states that (even only) one process may

crash.

To prove this impossibility result, the authors have

introduced the notion of valence associated with a global

state (also called configuration). Considering binary

consensus, a global state is0-valent (1-valent) if only 0(1)

can be decided from this global state; 0-valent and1-

valent states are univalent states. Otherwise, “the dice

are not yet cast”, and any of0or1can be still decided.

This is due to the uncontrolled and unpredictable

behavior of the environment (i.e., asynchrony and failure

pattern of the considered execution). A decision step of a

construction is one that carries the construction from a

bivalent state to univalent state. The impossibility proof

shows that (a) among all possible initial states, there is a

bivalent state, and (2) among all possible executions in

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

119

all possible environments, there is at least one execution

that makes the construction always progress from a

bivalent state to another bivalent state. It is easy to see

that, the impossibility to implement a consensus object

is related to the impossibility to break non-determinism

(i.e., the impossibility to ensure that, in any execution,

there is eventually a transition from a bivalent state to a

univalent state).

This message-passing result has then been extended to

asynchronous systems in which processes communicate

only by reading and writing atomic registers instead of

sending and receiving messages [29] [31].

Sequential vs. Distributed Computing:

It follows from the previous impossibility results that a

network of Turing machines, that progress

asynchronously and where at most one may crash

(which are two reasonable assumptions) connected by a

message-passing facility, or a read/write shared memory,

is computationally less powerful than a single reliable

Turing machine. As announced in the first section, this

shows that the nature of distributed computability issues

is different from the nature of Turing‟s computability

issues, namely, it is not related to the computational

power of the individual participants.

In this proposal various important aspects of

asynchronous algorithmic model of Parallel and

Distributed architecture will be suggested. The Term

“Asynchronous” means “involving or requiring a form

of computer control timing in which a specific operation

is begin upon receipt of an indication (signal) that the

preceding operation has been completed”. We will allow

some processors to compute faster and execute more

iteration, than other processors, to communicate more

frequently than others and we allow the communication

delays to substantial and unpredictable. We also allow

the communication channels to deliver messages out of

order.

Whereas Author [6] has talked about the asynchronous

computing related to distributed computing. According

to author – The ever growing amount of data produced

by parallel numerical simulations calls for new practices

to reduce the pressure on I/Os. For instance, the

complete chemical structure of the cap Sid of the HIV-1

virus has recently been resolved [32]. The molecular

model has a total of 64 million atoms. To simulate this

model, scientists used the Blue Water supercomputer,

the simulation producing about 10To per run of 100

nanoseconds of simulated time, which makes the

analysis of the trajectory very difficult.

Instead of saving raw data to disks for further post

processing, the in situ analytics paradigm proposes to

perform data processing as closely as possible to where

and when the data are produced [33]. The goal is first to

reduce the amount of data to be transferred and stored,

but also to parallelize analytics on the large

supercomputer booked for the simulation. Authors [6]

approach also enables to get a live feedback on the

current simulation state, and, if necessary, to take early

measures to stop the simulation or change some

parameters [34].

These processing workflows being interleaved with the

simulation, the ease of use, flexibility as well as the

overall performance impact must be carefully considered.

We can distinguish different mappings for analytics,

adopting the vocable of [35]: in situ embedded in the

simulation code, or running asynchronously on the same

nodes but often on dedicated helper cores; in transit on

staging nodes dedicated to analytics; or more classically

once data have been saved to disk. Depending on the

application domain and the analytics algorithms, the

needs can range from simple filtering schemes, for

instance removing the water atoms before saving a time

step of a molecular dynamics simulation, up to

producing high quality images [33].

Next directional approach has been adopted by [7], In

this big data era, the data size is growing at an

unprecedented scale. From videos in Youtube, security

footage at airports to astronomical data collected at the

large synoptic survey telescope, tons of data are being

generated everyday everywhere. In a recent digital

universe study by EMC, the world created about 1.8 zeta

bytes of data in 2011. Facebook alone, for example, is

estimated to be creating 12 terabytes of data every day.

The amount of data across the globe is also expected to

double every two years, and will reach 35 zeta bytes by

2020.

According to [7], to alleviate this big data problem, the

use of stochastic techniques has recently drawn a lot of

interest. Most of them are based on variants of the

stochastic gradient descent (Shalev-Shwartz et al., 2007)

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

120

[36]. Authors [7] idea is to replace the gradient over the

whole data set by the gradient at a single sample (or over

a small mini-batch of samples). Hence, its per-iteration

complexity is much lower, and can scale to much larger

data sets. While the stochastic approach alleviates the

big data problem by processing only a small sample

subset in each iteration, an alternative is to use

distributed processing. This is particularly natural for

many big data applications, in which the data sets are

too large to be stored or processed on one single

computer. In distributed optimization algorithms,

communication among the computing nodes is based on

either shared memory (Niu et al., 2011[37]) or

distributed memory (Langford et al., 2009 [40]; Agarwal

& Duchi, 2011 [41]; Ho et al., 2013 [42]; Li et al., 2013

[41]). In this paper [7], authors have focused on

algorithms using distributed memory, as they can often

handle much larger data sets. Consider minimizing a

function f (x) in a distributed computing environment

with N nodes. Assume that this function can be

decomposed into N components as

Where, each fi is a local objective involving only the

data subset residing on node i. This type of problems is

often encountered in various areas such as machine

learning, signal processing and wireless communication

(Bertsekas & Tsitsiklis, 1989 [42]; Zhu et al., 2010 [43]).

For example, in regularized risk minimization, x is the

model parameter to be estimated, and fi is the

regularized risk functional defined on the data subset at

node i.

The minimization of f (x) can be reformulated as the

following global variable consensus optimization

problem (Boyd et al., 2011; Bertsekas & Tsitsiklis, 1989

[42]):

Where, z is the so-called consensus variable, and xi is

node i‟s local copy of the parameter to be learned. In a

distributed computing environment, this problem can be

efficiently solved by the alternating direction method of

multipliers (ADMM) algorithm (Boyd et al., 2011),

which has been popularly used in various areas such as

machine learning, computer vision and data mining.

Essentially, one of the nodes, called the master, is

responsible for updating the consensus variable z, while

the remaining nodes are called workers. Each worker

minimizes its local objective fi (in parallel) based on its

data subset; and sends the updated local copy xi to the

master. The master, in turn, updates z by driving the x

i ‟s into consensus, and then distributes the updated

value back to the workers, and the process re-iterates.

In this proposed work we will try to investigate the

communication complexity of various aspects of

asynchronous network. Through the properties of

Interconnection Network algorithm will be proposed for

fine tuning of the performance of Parallel and

Distributed Systems. Fault tolerance and Load balancing

the two major aspects of parallel computing will also be

compared against conventional algorithms.

Through the topological properties of Interconnection

Network some algorithms will be proposed for fine

tuning the performance of Parallel and Distributed

Systems. Fault tolerance and Load balancing the two

major aspects of parallel computing will also be

compared against conventional algorithms.

Problem formulation & proposed idea:

In the recent years of study in the field of computer

science, we have seen an explosion of interest in

asynchronous networks of processors for parallel and

distributed systems. From theoretical point of view this

work has provided a challenging range of problem with

new ground rules for the study of various asynchronous

algorithmic models.

D. Chazan and W. L., Miranker [45] was introduced

“Asynchronous algorithmic models” in 1969, in their

paper „Chaotic relaxation Linear Algebra & Application‟,

in the context of iterative solution of linear systems of

equations. This model has also subsequently studied by

several others authors. In 1978, M.G. Baudet [46]

presents study of „Asynchronous iterative methods for

multiprocessors‟ and in 1982 D.P. Bertsekas [47]

present this paper for „Distributed dynamic

programming‟.

The Asynchronous convergence theorem is presented by

D.P. Bertsekas [47], in his paper,” Distributed

asynchronous computation of fixed points” in the year

1983. Necessary condition for asynchronous

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

121

convergence is discussed in 1987, by J.N. Tsitsiklis [48]

in his paper „On the stability of asynchronous iterative

processes‟. Mathematical system theory is new branch

of study for asynchronous networks of processors for

parallel and distributed systems. The asynchronous

relaxation methods for differential equations they

proposed in 1987 by D. Mitra in „Asynchronous

relaxations for the numerical solution of differential

equations by parallel processors‟. B. Lang., J.C. Miallov

and P. Spiteri have studied asynchronous algorithms for

two-point boundary value problems arising in optimal

control in 1986 in „Asynchronous relaxation algorithms

for optimal control problems‟, math. & compute. simul.

F. Robert studied “Totally asynchronous relaxation” in

year 1976.

The observation that the invariant distribution of a

Markov chain can be found by totally asynchronous

algorithm after fixing the value of a single coordinate of

the distribution vector is new at that time. Totally

asynchronous relaxation methods involving monotone

mappings were studied in 1982 by D.P. Bertsekas [47]

paper „Distributed dynamic programming‟.

The above given network performance parameters

depend not only on the network architecture but also on

a number of factors relating to application and their data

exchange characteristic. The challenge in

interconnection network design is finding the right

match between communication need of applications on

one side and capabilities and limitations inherent in each

architecture on the other hand. This, in turn, explains the

proliferation of implemented and proposed connectivity,

sometimes characterized as interconnection network see

in B. Parhami and M.A. Rakov paper for „Perfect

difference networks and related interconnection

structures for parallel and distributed systems‟.

In this proposal, various important aspects of

asynchronous algorithms and its data structures for

parallel and distributed architecture will be investigated.

We will examine networks of processor for

asynchronous system to compute faster for more

iteration. The complexity of interprocessor

communication will be investigated. We will

development P-RAM algorithms. The algorithms for the

following characteristics of asynchronous network of

processors will be continued:

 Load balancing.

 Fault tolerance/ Robustness.

 Low latency

 High Bandwidth

 Energy Efficiency

The connectivity of Processor‟s will be explained in

terms of the properties of topology & projective

geometry. As we know that the study of Asynchronous

processors of network required the study of protocol to

stream time of the processors therefore the protocol will

be investigated for the development of algorithms. We

will use graph theory and set theory as a basic tools to

study the asynchronous network model. The algorithm

for data routing and network flow model will be theme

of studied in future work. In the next step we will also

study load balancing algorithm for asynchronous system.

The communication complexity of various asynchronous

networks of processors will also be investigated. We

will also develop algorithms and data structure for linear

array of processors for asynchronous systems of

processors. Analysis of Parallel iteration and recursion

will also be the center of study in this proposal.

III. RESULTS AND DISCUSSION

Proposed idea and Motivation:

The goal of this research is:

We will follow the following methodology to achieve

the results:

 First, the proposed system surveyed the existing

methods related to the problem domain and to

develop algorithms and data structure for different

models for asynchronous algorithms for parallel and

distributed system. We want scientific assumptions

to make explain the concept for those models.

 Then, designing of the distributed systems with

asynchronous processors has been developed

(simulated) using graph theory, set theory properties

of projective geometry and topology as basic tools

for the explanation of asynchronous networks of

processors.

 Finally the evaluation of the proposed algorithm in

diverse topological has been chosen (simulated) for

effective evaluation of the proposed work in

asynchronous networks of processors for parallel

and distributed system environment.

 Study of projective geometry and topology will be

mapped to evaluate the obtained results related to

the asynchronous networks.

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

122

 For this, the concept of polynomial time using

polynomial number of processor for asynchronous

system

IV. CONCLUSION

This paper has been surveyed a new applications areas of

the distributed and parallel algorithms. Modern‟s

computational world has many problems that‟s needed an

urgent attention and consequently required an efficient

solution for the same. Distributed algorithm for the

Asynchronous networks processors is one of them which

help to solve many problems like coloring of the graph

etc. Next version of this article will present the algorithm

for MPI system that‟s works on asynchronous

architecture.

V. REFERENCES

[1] Pengfei Yang and Biao Chen “To Listen or Not:

Distributed Detection with Asynchronous

Transmissions”, IEEE SIGNAL PROCESSING

LETTERS, VOL. 22, NO. 5, MAY 2015.

[2] Ryan K. Williams, Andrea Gasparri, Attilio Priolo, and

Gaurav S. Sukhatme “Evaluating Network Rigidity in

Realistic Systems: Decentralization, Asynchronicity, and

Parallelization”, IEEE TRANSACTIONS ON

ROBOTICS, VOL. 30, NO. 4, AUGUST 2014.

[3] Alexandre Maurer and Sebastien Tixeuil “Containing

Byzantine Failures with Control Zones”, IEEE

TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, VOL. 26, NO. 2,

FEBRUARY 2015.

[4] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker

and Ion Stoica “Reliable, Memory Speed Storage for

Cluster Computing Frameworks”, Technical Report No.

UCB/EECS-2014-135, available at

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS

-2014-135.html

[5] Michel Raynal “What Can be Computed in a Distributed

System?”,

[6] Matthieu Dreher, Bruno Ran “A Flexible Framework for

Asynchronous In Situ and In Transit Analytics for

Scientic Simulations”, 14th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, May

2014, Chicago, United States. IEEE Computer Science

Press. <hal-00941413>

[7] Ruiliang Zhang and James T. Kwok “Asynchronous

Distributed ADMM for Consensus Optimization”,

Proceedings of the 31 st International Conference on

Machine Learning, Beijing, China, 2014. JMLR: W&CP

volume 32.

[8] S. G. Akl. The Design and Analysis of Parallel

Algorithms. Prentice Hall, Englewood Cliffs, 1997.

[9] Bertsekas, D.P., and J.N. Tsitsiklis (1989). Parallel and

Distributed Computation: Numerical Methods, Prentice

Hall, Englewood Cliffs, NJ.

[10] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin,A. Kyrola,

and J. M. Hellerstein. Distributed graphlab: a framework

for machine learning and data mining in the cloud.

Proceedings of the VLDB Endowment, 5(8):716–727,

2012.

[11] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I.

Horn, N. Leiser, and G. Czajkowski. Pregel: a system for

large-scale graph processing. In Proceedings of the 2010

ACM SIGMOD International Conference on

Management of data, pages 135–146. ACM, 2010.

[12] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S.

Shivakumar, M. Tolton, and T. Vassilakis. Dremel:

interactive analysis of web-scale datasets. Proceedings of

the VLDB Endowment, 3(1-2):330– 339, 2010.

[13] R. Power and J. Li. Piccolo: Building Fast, Distributed

Programs with Partitioned Tables. In Proceedings of the

9th USENIX conference on Operating systems design and

implementation, pages 293–306. USENIX Association,

2010.

[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.

McCauley, M. J. Franklin, S. Shenker, and I. Stoica.

Resilient Distributed Datasets: A FaultTolerant

Abstraction for In-Memory Cluster Computing. In

Proceedings of the 9th USENIX conference on

Networked Systems Design and Implementation.

USENIX Association, 2012.

[15] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I.

Stoica. Discretized streams: Fault-tolerant streaming

computation at scale. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems

Principles, pages 423–438. ACM, 2013.

[16] Apache Oozie. http://incubator.apache.org/oozie/Luigi.

https://github.com/spotify/luigi.

[17] Apache Crunch. http://crunch.apache.org/Apache

Mahout. http://mahout.apache.org/

[18] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N.

Zhang, S. Antony, H. Liu, and R. Murthy. Hive a

petabyte scale data warehouse using hadoop. In Data

Engineering (ICDE), 2010 IEEE 26th International

Conference on, pages 996–1005. IEEE, 2010.

[19] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A.

Tomkins. Pig latin: a not-so-foreign language for data

processing. In SIGMOD ‟08, pages 1099–1110.

[20] C. Chambers et al. FlumeJava: easy, efficient dataparallel

pipelines. In PLDI 2010.

[21] Harel, D., Feldman, Y.: Algorithmics, the spirit of

computing, 572 pages. Springer (2012).

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

123

[22] Lamport, L.: Time, clocks, and the ordering of events in a

distributed system. Communications of the ACM 21(7),

558–565 (1978).

[23] Raynal, M.: Distributed algorithms for message-passing

systems, 515 pages. Springer, ISBN:978-3-642-38122-5.

[24] Lamport, L.: On inter-process communications, Part I:

Basic formalism. Distributed Computing 1(2), 77–85

(1986).

[25] Herlihy, M.P.: Wait-free synchronization. ACM

Transactions on Programming Languages and Systems

13(1), 124–149 (1991).

[26] Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility

of distributed consensus with one faulty process. Journal

of the ACM 32(2), 374–382 (1985).

[27] Loui, M., Abu-Amara, H.: Memory requirements for

agreement among unreliable asynchronous processes.

Advances in Computing Research 4, 163–183 (1987).

[28] G. Zhao, J. R. Perilla, E. L. Yufenyuy, X. Meng, B. Chen,

J. Ning, J. Ahn, A. M. Gronenborn, K. Schulten, and C.

Aiken, “Mature HIV-1 Capsid Structure by Cryo-electron

Microscopy and All-Atom Molecular Dynamics,” pp.

643– 646, 2013.

[29] H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma, “In

situ visualization for large-scale combustion simulations,”

Computer Graphics and Applications, IEEE, vol. 30, no.

3, pp. 45–57, 2010.

[30] W. Gu, G. Eisenhauer, K. Schwan, and J. Vetter, “Falcon:

On-line monitoring for steering parallel programs,” in In

Ninth International Conference on Parallel and

Distributed Computing and Systems (PDCS‟97), 1998,

pp. 699–736.

[31] J. C. Bennett, H. Abbasi, P.-T. Bremer, R. Grout, A.

Gyulassy, T. Jin, S. Klasky, H. Kolla, M. Parashar, V.

Pascucci, P. Pebay, D. Thompson, H. Yu, F. Zhang, and

J. Chen, “Combining in-situ and in-transit processing to

enable extreme-scale scientific analysis,” in nternational

Conference on High Performance Computing,

Networking, Storage and Analysis. IEEE Computer

Society Press, 2012, pp. 49:1–49:9.

[32] Shalev-Shwartz, S., Singer, Y., and Srebro, N. Pegasos:

Primal estimated sub-gradient solver for SVM. In

Proceedings of the 24th International Conference on

Machine Learning, pp. 807–814, 2007.

[33] Niu, F., Recht, B., R´ e, C., and Wright, S.J. Hogwild!: A

lock-free approach to parallelizing stochastic gradient

descent. In Advances in Neural Information Processing

Systems 24, 2011.

[34] Langford, J., Smola, A., and Zinkevich, M. Slow learners

are fast. In Advances in Neural Information Processing

Systems 22, 2009.

[35] Agarwal, A. and Duchi, J.C. Distributed delayed

stochastic optimization. In Advances in Neural

Information Processing Systems 24, 2011.

[36] Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J.K., Gibbons,

P.B., Gibson, G.A., Ganger, G., and Xing, E. More

effective distributed ML via a stale synchronous parallel

parameter server. In Advances in Neural Information

Processing Systems 26, pp. 1223–1231, 2013.

[37] Li, M., Andersen, D.G., and Smola, A. Distributed

delayed proximal gradient methods. In NIPS Workshop

on Optimization for Machine Learning, 2013.

[38] Bertsekas, D.P. and Tsitsiklis, J.N. Parallel and

Distributed Computation. Prentice Hall, 1989.

[39] Zhu, H., Cano, A., and Giannakis, G.B. Distributed

consensus-based demodulation: Algorithms and error

analysis. IEEE Transactions on Wireless

Communications, 9(6):2044–2054, 2010.

[40] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.

Distributed optimization and statistical learning via the

alternating direction method of multipliers. Foundations

and Trends in Machine Learning, 3(1):1–122, 2011.

[41] D. Chazan and W. Miranker, Chaotic relaxation, Linear

Algebra Appl., 2 (1969), pp. 199–222.

[42] G. Baudet, Asynchronous iterative methods for

multiprocessors, J. Assoc. Comput. Mach., 25 (1978), pp.

226{244. -46.

[43] Bertsekas, D.P. (1982). Distributed Dynamic

Programming. IEEE Transactions on Automatic Control,

AC-27,610~16.

[44] J. N. Tsitsiklis, On the stability of asynchronous iterative

processes, Math. Systems Theory, 20 (1987), 137-153.

[45] B. Parhami and M. Rakov, “Perfect Difference Networks

and Related Interconnection Structures for Parallel and

Distributed Systems”, IEEE Trans. on Parallel and

Distributed Systems, vol. 16, no. 8,pp. 714-724, Aug.

2005.

