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ABSTRACT 
 

Advancement in electronics and computer architecture has opened new domains of the parallel and distributed 

computing. The advent of the Multi Core CPU‟s with the blending of the open MPI techniques has given the wings 

to the distributed computing with assurance of the parallelism. In this proposal, various important aspects of 

asynchronous algorithms and its data structures for parallel and distributed architecture will be investigated. This 

article has proposed and will examine networks of processor for asynchronous system to compute faster for more 

iteration. The complexity of interprocessor communication will be investigated.  Hence efficient asynchronous 

algorithm is main concerned of the study for MPI systems. 
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I. INTRODUCTION 

 

Advancement in electronics and computer architecture 

has opened new domains of the parallel and distributed 

computing. The advent of the Multi Core CPU‟s with 

the blending of the open MPI techniques has given the 

wings to the distributed computing with assurance of the 

parallelism.  Evolution and 3Gand 4G with distributed 

functionality with help of the mobile agent‟s technology 

has proof the significance of the autonomy of the 

software code i.e. distributed nature of the agents. 

 

Over the past few years, there have been tremendous 

efforts to improve the speed and sophistication of large-

scale data-parallel processing systems [4]. Practitioners 

and researchers have built a wide array of programming 

frameworks [10, 11, 12, 13, 14, 15] and storage systems 

[16, 17, 18, 19, 20] tailored to a variety of workloads. As 

the performance of many of these systems is I/O bound, 

traditional means of improving their speed is to cache 

data into memory [8, 11]. While caching can 

dramatically improve read performance, unfortunately, it 

does not help much with write performance. This is 

because these highly parallel systems need to provide 

fault tolerance, and the way they achieve it is by 

replicating the data written across nodes. Even 

replicating the data in memory can lead to a significant 

drop in the write performance, as both the latency and 

throughput of the network are typically much worse than 

that of local memory.  

 

Slow writes can significantly hurt the performance of 

job pipelines, where one job consumes the output of 

another. These pipelines are regularly produced by 

workflow managers such as Oozie [18] and Luigi [19], 

e.g., to perform data extraction with Map Reduce, then 

execute a SQL query and then run a machine learning 

algorithm on the query‟s result. Furthermore, many 

high-level programming interfaces [20, 21, 22], such as 

Pig [23] and Flume Java [24], compile programs into 

multiple Map Reduce jobs that run sequentially. In all 

these cases, data is replicated across the network in-

between each of the steps.  

 

The recent years encountered the development of 

software standard for clusters computing. The 

complexity of interprocessor communication in case of 

asynchronous networks efficiency becomes a course of 

studies for computer scientists and Mathematicians. The 

computer scientists are try to investigate new ways to 

optimize number of links and efficient message passing 

mechanisms. 
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The major constraints in asynchronous networks of 

processors are: 

 Load Balancing. 

 Fault Tolerance/ Robustness.  

 Low Latency 

 High Bandwidth 

 Energy Efficiency. 

 

The emergence of distributed computation demands the 

development of new architecture to counter the 

challenge of new technology. 

 

According to [5], in sequential computing, computability 

is understood through the Church-Turing‟s thesis 

(namely, anything that can be computed, can be 

computed by a Turing machine). Moreover, when 

considering the notion of a universal algorithm 

encountered in sequential computing, such an algorithm 

“has the ability to act like any algorithm whatsoever. It 

accepts as inputs the description of any algorithm A and 

any legal input X, and simply runs, or simulates, A on X. 

[...] In a sense, a computer [...] is very much like a 

universal algorithm [25].”.  

 

Hence, the question: Is it possible to design a universal 

algorithm/machine on top of an asynchronous crash-

prone distributed system? As we are about to see, it 

happens that, due the environment (asynchrony and 

process failures) of a distributed system, and the fact that 

it cannot control it, distributed computability has a 

different flavor than computability in sequential 

computing. Moreover, this is independent of the fact that 

the communication is by read/write registers or 

message-passing. Due to its very nature, distributed 

computing requires cooperation among the processes. 

Intuitively, the computability issues come from the fact 

that, due to the net effect of asynchrony and failures, a 

process can be unable to know if another process has 

crashed or is only slow (or equivalently if the channel 

connecting these processes is slow). Moreover, this is 

true whatever the individual power of each process. To 

cite  “It follows that the limits of computability reflect 

the difficulty of making decisions in the face of 

ambiguity, and have little to do with the inherent 

computational power of individual participants”.   

 

Rest of the article is organized as follow, Section II 

presents the brief introduction about the distributed and 

parallel computing and its evolution, Section III 

discusses the recent contribution in the asynchronous 

computing networks and its significant application 

domain. Section IV presents proposed research idea and 

the motivational factor. And finally Section V concludes 

the papers with the future directions of this work. 

 

II. METHODS AND MATERIAL 

Parallel & distributed computing: 

Term Network is the simplest word having the highest 

complexity hidden inside.  Modern era is the age of 

computation; everything is depends, operated and 

derived from computation. Evolution of the fast 

computer‟s and CPU makes life easier, even though this 

nano-integrated deice designing is one of the complex 

and adept task. Abstraction is the methodology of the 

software engineering to hide irrelevant details 

(complexity) from the end users. Abstraction with 

felling of uni-user is also termed as transparency in 

distributed system.  

 

According to Coulouris defines a distributed system as 

“A system in which hardware or software components 

located at networked computers communicates and 

coordinates their actions only by message passing”. 

Whereas according to Tanenbaum defines it as “A 

collection of independent computers that appear to the 

users of the system as a single computer”. 

 

Leslie Lamport, a famous researcher on timing, message 

ordering and clock synchronization in distributed 

systems once said that “A distributed system is one on 

which I cannot get any work done because some 

machine I have never heard of has crashed”, reflecting 

on the huge number of challenges faced by distributed 

system designers. 

 

The nodes in a distributed system are connected by an 

interconnection network. The communication in 

between nodes in the distributed system takes place by 

exchanging messages. Therefore these distributed 

systems are commonly known as message passing 

distributed systems with contrast to shared memory 

communication, which is extensively followed in 

various multiprocessor and parallel systems. Some of the 

distributed systems such as wireless ad-hoc networks 

follow an arbitrary network topology, where the nodes 

are randomly deployed in the environment. Other kind 

of distributed systems such as electronic automotive 

systems are extensively used in real time applications.  
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Parallel System 

It is an “A collection of processing elements that 

communicate and cooperate to solve large problems 

fast”. Parallel computers or systems are tightly coupled 

in nature as per Flynn‟s classification. 

 

Distributed System 

It‟s an “A collection of independent computers that 

appear to its users as a single coherent system.” 

 

A parallel computer is implicitly a distributed system. 

[Wiki] 

 

A distributed system is composed of a set of machines 

which do not share a global clock, the machines 

communicate with each other by exchanging messages 

over a communication network. Each machine in the 

distributed system has its own memory and runs its own 

operating system. The machines in a distributed system 

offer their resources for collective computation. The 

resources owned and controlled by a machine are said to 

be local to it, while the resources owned and controlled 

by other computers and those that can only be accessed 

through the network are said to be remote. These 

resources can be of various types such as computation 

nodes, storage devices etc. A large number of 

applications have been developed to harness the power 

of distributed systems.  

Typically a distributed system has the following 

characteristics:  

 Multiple nodes – A distributed system is composed 

of multiple independent nodes belonging to different 

computers, not merely multiple processors on the 

same computer.  

 Heterogeneity – The nodes in a distributed system 

may consist of machines having different 

architectures and possibly running different types of 

operating systems.  

 Message passing – Processes on the different 

resource nodes may communicate using diverse 

networking protocols over different networking 

technologies. Therefore, the characteristics of the 

underlying communication links can be different. 

The nodes in most distributed systems are reachable 

from one another.  

 Concurrency – Each of the nodes in a distributed 

system provides independent functionality, and 

operates concurrently with other nodes 

Decentralized control – No single computer is 

necessarily responsible for configuration, 

management, or policy control for the whole 

distributed system. However, some functionality 

may reside in a central node or a set of nodes by 

necessity.  

 Openness – Many distributed systems are open, i.e., 

an unbounded number of nodes or components can 

be added or changed even while the system is 

running.  

 

The main objective of a distributed system is to achieve 

high throughput for distributed applications through 

concurrent computation and to increase accessibility to 

resources not commonly available to a single machine. 

 

According to author [5], Distributed computing was 

born in the late seventies when researchers and 

engineers started to take into account the intrinsic 

characteristic of physically distributed systems [26]. 

Distributed computing arises when one has to solve a 

problem involving physically distributed entities (called 

processes, processors, agents, actors, sensors, peers, etc.), 

such that each entity (a) has only a partial knowledge of 

the many input parameters of the problem to be solved, 

and (b) has to compute local outputs which may depend 

on some non-local input parameters. It follows that the 

computing entities have necessarily to exchange 

information and cooperate [27]. 

 

Distributed System - A (static) distributed system is 

made up of n sequential deterministic processes, 

denotedp1,...,pn. These processes communicate and 

synchronize through a communication medium, which is 

either a network that allows the processes to send and 

receive messages, or a set of atomic read/write registers 

(atomic registers could be replaced by “weaker” safe or 

regular registers, but as shown in [28] – where these 

registers are defined– safe, regular and atomic registers 

have the same computational power). 

 

Deterministic means here that the behavior of a process 

is entirely determined from its initial state, the algorithm 

it executes, and –according to the communication 

medium– the sequence of values read from atomic 

registers or the sequence of received messages (hence, 

obtaining different sequences of values or receiving 

messages in a different order can produce different 

behaviors). 
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Asynchronous Read/Write or Message-Passing 

System - In an asynchronous (also called time-free) 

read/write system, the processes are asynchronous in the 

sense that, for each of them, there is no assumption on 

its speed (except that it is positive). If the 

communication is by message-passing, the network also 

is asynchronous, namely, the transfer duration of any 

message is finite but arbitrary. 

 

Synchronous Message-Passing System - Differently, 

the main feature of a synchronous system lies in the 

existence of an upper bound on message transfer delays. 

Moreover, (a) this bound is known by the processes, and 

(b) it is assumed that processing  durations are negligible 

with respect to message transfer delays; consequently 

processing are assumed to have zero duration. 

 

This type of synchrony is abstracted by the notion of 

round-based computation. The processes proceed in 

rounds during which each process first sends messages, 

then, receive messages, and executes local computation. 

The fundamental assumption which characterizes a 

synchronous message-passing system is that a message 

sent during a round is received by its destination process 

during the very same round.  

 

Process Crash Failure - The most common failure 

studied in distributed computing is the process crash 

failure. Such a failure occurs when a process halts 

unexpectedly. Before crashing it executes correctly its 

algorithm, and after having crashed, it never recovers. 

Let t be the maximal number of processes that may crash; 

t is a model parameter and the model is called t-resilient 

model. The asynchronous distributed computing 

(read/write or message-passing) model in which all 

processes, except one, may crash is called wait-free 

model. Hence, wait-free model is synonym of (n−1)-

resilient model.  

 

The Notion of Environment and Non-determinism – 

The environment of a distributed system is the set of 

failures and (a) synchrony patterns in which the system 

may evolve. Hence, a system does not master its 

environment but suffers it. As processes are 

deterministic, the only non-determinism a distributed 

system has to cope with is the non-determinism created 

by its environment.  

 

Complexity vs. Computability Issues - Computability 

and complexity are the two lenses that allow us to 

understand and master computing. The following table 

presents the main issues encountered in distributed 

computing, when considering these two lenses. 

 

 Synchronous Asynchronous 

Failure free complexity Complexity 

Failure-

prone 

complexity computability 

 

Advantages:  

• Higher price/performance ratio – By 

interconnecting powerful workstations with high 

speed communication network we achieve higher 

performance at lower cost.  

• Resource sharing – A node in a distributed system 

can access both software and hardware resources of 

another node remotely over the communication 

network.  

• Improved availability – A distributed computing 

system provides improved reliability and availability 

because a few components of the system can fail 

without affecting the availability of the rest of the 

system.  

• Improved reliability – By replicating data and 

services the distributed systems can be made fault 

tolerant Distributed systems have been used for a 

wide variety applications ranging from scientific 

simulations collaborative engineering, 

supercomputer enabled scientific instruments, 

applications in Geographical Information Systems 

(GIS) like weather prediction, railway or airline 

reservation systems etc.  

 

Distributed systems are composed of multiple 

computing resources connected by communication links. 

Since failure of nodes and links are assumed to be 

independent, larger the system, higher is its probability 

of failure. Therefore, in a distributed system, failures are 

relatively common events. Distributed systems should 

remain at least partially available and functional even if 

some of their nodes or communication links fail or 

misbehave. Without fault tolerance mechanisms, the 

system and the applications running on it need to be 

restarted every time a failure occurs. Many of the 

distributed applications mentioned above are long 

running, taking hours or even days in some cases to 

complete. If a fault occurs in the middle of a long 
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running application, long hours of useful computation 

will be lost. Thus an application may take a long time to 

complete in the presence of such failures. Fault tolerance 

techniques can allow applications to run to completion 

in the presence of faults with minimal disruption. Since 

such techniques do not need an application to restart 

when a fault occurs, they also save system resources and 

improve system throughput. 

 

Distributed Computing:  

 

A concurrent object is an object that can be accessed by 

several processes. Let us consider a concurrent object Z 

defined by a sequential specification on a set of total 

operations. An operation is total is, when executed alone, 

it always returns a result. A specification is sequential, if 

all the correct behaviors of the object can be described 

by sequences of operations. The notion of universality 

we are interested in concerns the possibility to 

implement any concurrent object such as Z, despite 

asynchrony and crashes. If it exists, such an 

implementation, which takes the sequential specification 

of Z as input and builds a corresponding concurrent 

object, is called a universal construction. This is 

depicted in Fig. 1. 

 
Figure 1. from a Universal Specification to Wait Free Specification 

depicted by [5] 

 

In some cases the object Z encapsulates a service which 

can be abstracted as a state machine. A replication-based 

universal construction of such an object Z is usually 

called a state machine replication algorithm [39]. Let us 

remark that the object Z could also be a Turing machine. 

 

The Consensus Object - A consensus object is a one-

shot concurrent object defined by a sequential 

specification that provides the processes with a single 

operation denoted propose (v) where v is an input 

parameter (called proposed value”). “One-shot” means 

that, given a consensus object, a process invokes at most 

once the operation propose (). 

 

If it terminates, the operation returns a result (called 

“decided” value). This object can be defined by the three 

following properties. 

• Validity - If a process decides a value, this value has 

been proposed by a process. 

• Agreement - No two processes decide different 

values. 

• Termination - An invocation of propose () by a 

process that does not crash terminates. 

 

Consensus-Based Universal Construction - Several 

universal constructions based on atomic registers and 

consensus objects have been proposed, e.g., [29]. In that 

sense, and as depicted in Figure 2, consensus is a 

universal object to design wait-free universal 

constructions, i.e., wait-free implementations of any 

concurrent object defined by a sequential specification. 

This is depicted in Fig. 1.2 

 

 
Figure 1.2 Universal construction from atomic registers and 

consensus objects [5] 

Recent trends in Asynchronous Networks: 

In a universal construction, consensus objects are used 

by the processes to build a single total order on the 

operation invocations applied to the constructed object Z. 

This is the method used to ensure that the internal 

representation of Z remains always consistent, and is 

consequently seen the same way by all processes. 

One of the most important of the theoretical results of 

distributed computing is the celebrated FLP result 

(named after its authors Fischer, Lynch, and Paterson) 

[30]), which states that no binary consensus object (a 

process can only propose v ∈ {0,1}) can be built in an 

asynchronous message-passing system whose 

environment states that (even only) one process may 

crash.  

 

To prove this impossibility result, the authors have 

introduced the notion of valence associated with a global 

state (also called configuration). Considering binary 

consensus, a global state is0-valent (1-valent) if only 0(1) 

can be decided from this global state; 0-valent and1-

valent states are univalent states. Otherwise, “the dice 

are not yet cast”, and any of0or1can be still decided. 

This is due to the uncontrolled and unpredictable 

behavior of the environment (i.e., asynchrony and failure 

pattern of the considered execution). A decision step of a 

construction is one that carries the construction from a 

bivalent state to univalent state. The impossibility proof 

shows that (a) among all possible initial states, there is a 

bivalent state, and (2) among all possible executions in 
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all possible environments, there is at least one execution 

that makes the construction always progress from a 

bivalent state to another bivalent state. It is easy to see 

that, the impossibility to implement a consensus object 

is related to the impossibility to break non-determinism 

(i.e., the impossibility to ensure that, in any execution, 

there is eventually a transition from a bivalent state to a 

univalent state). 

 

This message-passing result has then been extended to 

asynchronous systems in which processes communicate 

only by reading and writing atomic registers instead of 

sending and receiving messages [29] [31].  

 

Sequential vs. Distributed Computing:  

It follows from the previous impossibility results that a 

network of Turing machines, that progress 

asynchronously and where at most one may crash 

(which are two reasonable assumptions) connected by a 

message-passing facility, or a read/write shared memory, 

is computationally less powerful than a single reliable 

Turing machine. As announced in the first section, this 

shows that the nature of distributed computability issues 

is different from the nature of Turing‟s computability 

issues, namely, it is not related to the computational 

power of the individual participants.  

 

In this proposal various important aspects of 

asynchronous algorithmic model of Parallel and 

Distributed architecture will be suggested. The Term 

“Asynchronous” means “involving or requiring a form 

of computer control timing in which a specific operation 

is begin upon receipt of an indication (signal) that the 

preceding operation has been completed”. We will allow 

some processors to compute faster and execute more 

iteration, than other processors, to communicate more 

frequently than others and we allow the communication 

delays to substantial and unpredictable. We also allow 

the communication channels to deliver messages out of 

order. 

   

Whereas Author [6] has talked about the asynchronous 

computing related to distributed computing. According 

to author – The ever growing amount of data produced 

by parallel numerical simulations calls for new practices 

to reduce the pressure on I/Os. For instance, the 

complete chemical structure of the cap Sid of the HIV-1 

virus has recently been resolved [32]. The molecular 

model has a total of 64 million atoms. To simulate this 

model, scientists used the Blue Water supercomputer, 

the simulation producing about 10To per run of 100 

nanoseconds of simulated time, which makes the 

analysis of the trajectory very difficult. 

 

Instead of saving raw data to disks for further post 

processing, the in situ analytics paradigm proposes to 

perform data processing as closely as possible to where 

and when the data are produced [33]. The goal is first to 

reduce the amount of data to be transferred and stored, 

but also to parallelize analytics on the large 

supercomputer booked for the simulation. Authors [6] 

approach also enables to get a live feedback on the 

current simulation state, and, if necessary, to take early 

measures to stop the simulation or change some 

parameters [34]. 

 

These processing workflows being interleaved with the 

simulation, the ease of use, flexibility as well as the 

overall performance impact must be carefully considered. 

We can distinguish different mappings for analytics, 

adopting the vocable of [35]: in situ embedded in the 

simulation code, or running asynchronously on the same 

nodes but often on dedicated helper cores; in transit on 

staging nodes dedicated to analytics; or more classically 

once data have been saved to disk. Depending on the 

application domain and the analytics algorithms, the 

needs can range from simple filtering schemes, for 

instance removing the water atoms before saving a time 

step of a molecular dynamics simulation, up to 

producing high quality images [33]. 

   

Next directional approach has been adopted by [7], In 

this big data era, the data size is growing at an 

unprecedented scale. From videos in Youtube, security 

footage at airports to astronomical data collected at the 

large synoptic survey telescope, tons of data are being 

generated everyday everywhere. In a recent digital 

universe study by EMC, the world created about 1.8 zeta 

bytes of data in 2011. Facebook alone, for example, is 

estimated to be creating 12 terabytes of data every day. 

The amount of data across the globe is also expected to 

double every two years, and will reach 35 zeta bytes by 

2020. 

 

According to [7], to alleviate this big data problem, the 

use of stochastic techniques has recently drawn a lot of 

interest. Most of them are based on variants of the 

stochastic gradient descent (Shalev-Shwartz et al., 2007) 
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[36]. Authors [7] idea is to replace the gradient over the 

whole data set by the gradient at a single sample (or over 

a small mini-batch of samples). Hence, its per-iteration 

complexity is much lower, and can scale to much larger 

data sets. While the stochastic approach alleviates the 

big data problem by processing only a small sample 

subset in each iteration, an alternative is to use 

distributed processing. This is particularly natural for 

many big data applications, in which the data sets are 

too large to be stored or processed on one single 

computer. In distributed optimization algorithms, 

communication among the computing nodes is based on 

either shared memory (Niu et al., 2011[37]) or 

distributed memory (Langford et al., 2009 [40]; Agarwal 

& Duchi, 2011 [41]; Ho et al., 2013 [42]; Li et al., 2013 

[41]). In this paper [7], authors have focused on 

algorithms using distributed memory, as they can often 

handle much larger data sets. Consider minimizing a 

function f (x) in a distributed computing environment 

with N nodes. Assume that this function can be 

decomposed into N components as 

 

 
 

Where, each fi is a local objective involving only the 

data subset residing on node i. This type of problems is 

often encountered in various areas such as machine 

learning, signal processing and wireless communication 

(Bertsekas & Tsitsiklis, 1989 [42]; Zhu et al., 2010 [43]). 

For example, in regularized risk minimization, x is the 

model parameter to be estimated, and fi is the 

regularized risk functional defined on the data subset at 

node i. 

 

The minimization of f (x) can be reformulated as the 

following global variable consensus optimization 

problem (Boyd et al., 2011; Bertsekas & Tsitsiklis, 1989 

[42]): 

 
 

Where, z is the so-called consensus variable, and xi is 

node i‟s local copy of the parameter to be learned. In a 

distributed computing environment, this problem can be 

efficiently solved by the alternating direction method of 

multipliers (ADMM) algorithm (Boyd et al., 2011), 

which has been popularly used in various areas such as 

machine learning, computer vision and data mining. 

Essentially, one of the nodes, called the master, is 

responsible for updating the consensus variable z, while 

the remaining nodes are called workers. Each worker 

minimizes its local objective fi (in parallel) based on its 

data subset; and sends the updated local copy xi to the 

master. The master, in turn, updates z by driving the x 

i ‟s into consensus, and then distributes the updated 

value back to the workers, and the process re-iterates. 

 

In this proposed work we will try to investigate the 

communication complexity of various aspects of 

asynchronous network. Through the properties of 

Interconnection Network algorithm will be proposed for 

fine tuning of the performance of Parallel and 

Distributed Systems. Fault tolerance and Load balancing 

the two major aspects of parallel computing will also be 

compared against conventional algorithms. 

 

Through the topological properties of Interconnection 

Network some algorithms will be proposed for fine 

tuning the performance of Parallel and Distributed 

Systems. Fault tolerance and Load balancing the two 

major aspects of parallel computing will also be 

compared against conventional algorithms. 

Problem formulation & proposed idea: 

In the recent years of study in the field of computer 

science, we have seen an explosion of interest in 

asynchronous networks of processors for parallel and 

distributed systems.  From theoretical point of view this 

work has provided a challenging range of problem with 

new ground rules for the study of various asynchronous 

algorithmic models.  

 

D. Chazan and W. L., Miranker [45] was introduced 

“Asynchronous algorithmic models” in 1969, in their 

paper „Chaotic relaxation Linear Algebra & Application‟, 

in the context of iterative solution of linear systems of 

equations. This model has also subsequently studied by 

several others authors. In 1978, M.G. Baudet [46] 

presents study of „Asynchronous iterative methods for 

multiprocessors‟ and in 1982 D.P. Bertsekas [47] 

present this paper for „Distributed dynamic 

programming‟. 

 

The Asynchronous convergence theorem is presented by 

D.P. Bertsekas [47], in his paper,” Distributed 

asynchronous computation of fixed points” in the year 

1983. Necessary condition for asynchronous 
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convergence is discussed in 1987, by J.N. Tsitsiklis [48] 

in his paper „On the stability of asynchronous iterative 

processes‟. Mathematical system theory is new branch 

of study for asynchronous networks of processors for 

parallel and distributed systems. The asynchronous 

relaxation methods for differential equations they 

proposed in 1987 by D. Mitra in „Asynchronous 

relaxations for the numerical solution of differential 

equations by parallel processors‟. B. Lang., J.C. Miallov 

and P. Spiteri have studied asynchronous algorithms for 

two-point boundary value problems arising in optimal 

control in 1986 in „Asynchronous relaxation algorithms 

for optimal control problems‟, math. & compute. simul. 

F. Robert studied “Totally asynchronous relaxation” in 

year 1976. 

 

The observation that the invariant distribution of a 

Markov chain can be found by totally asynchronous 

algorithm after fixing the value of a single coordinate of 

the distribution vector is new at that time. Totally 

asynchronous relaxation methods involving monotone 

mappings were studied in 1982 by D.P. Bertsekas [47] 

paper „Distributed dynamic programming‟. 

 

The above given network performance parameters 

depend not only on the network architecture but also on 

a number of factors relating to application and their data 

exchange characteristic. The challenge in 

interconnection network design is finding the right 

match between communication need of applications on 

one side and capabilities and limitations inherent in each 

architecture on the other hand. This, in turn, explains the 

proliferation of implemented and proposed connectivity, 

sometimes characterized as interconnection network see 

in B. Parhami and M.A. Rakov paper for „Perfect 

difference networks and related interconnection 

structures for parallel and distributed systems‟. 

 

In this proposal, various important aspects of 

asynchronous algorithms and its data structures for 

parallel and distributed architecture will be investigated. 

We will examine networks of processor for 

asynchronous system to compute faster for more 

iteration. The complexity of interprocessor 

communication will be investigated. We will 

development P-RAM algorithms. The algorithms for the 

following characteristics of asynchronous network of 

processors will be continued: 

 Load balancing. 

 Fault tolerance/ Robustness.  

 Low latency 

 High Bandwidth 

 Energy Efficiency  

 

The connectivity of Processor‟s will be explained in 

terms of the properties of topology & projective 

geometry. As we know that the study of Asynchronous 

processors of network required the study of protocol to 

stream time of the processors therefore the protocol will 

be investigated for the development of algorithms. We 

will use graph theory and set theory as a basic tools to 

study the asynchronous network model. The algorithm 

for data routing and network flow model will be theme 

of studied in future work. In the next step we will also 

study load balancing algorithm for asynchronous system. 

The communication complexity of various asynchronous 

networks of processors will also be investigated. We 

will also develop algorithms and data structure for linear 

array of processors for asynchronous systems of 

processors. Analysis of Parallel iteration and recursion 

will also be the center of study in this proposal. 

 

III. RESULTS AND DISCUSSION 

 

Proposed idea and Motivation: 

The goal of this research is: 

We will follow the following methodology to achieve 

the results: 

 First, the proposed system surveyed the existing 

methods related to the problem domain and to 

develop algorithms and data structure for different 

models for asynchronous algorithms for parallel and 

distributed system. We want scientific assumptions 

to make explain the concept for those models. 

 Then, designing of the distributed systems with 

asynchronous processors has been developed 

(simulated) using graph theory, set theory properties 

of projective geometry and topology as basic tools 

for the explanation of asynchronous networks of 

processors. 

 Finally the evaluation of the proposed algorithm in 

diverse topological has been chosen (simulated) for 

effective evaluation of the proposed work in 

asynchronous networks of processors for parallel 

and distributed system environment.  

 Study of projective geometry and topology will be 

mapped to evaluate the obtained results related to 

the asynchronous networks. 
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 For this, the concept of polynomial time using 

polynomial number of processor for asynchronous 

system 

 

IV. CONCLUSION 

 
This paper has been surveyed a new applications areas of 

the distributed and parallel algorithms. Modern‟s 

computational world has many problems that‟s needed an 

urgent attention and consequently required an efficient 

solution for the same. Distributed algorithm for the 

Asynchronous networks processors is one of them which 

help to solve many problems like coloring of the graph 

etc. Next version of this article will present the algorithm 

for MPI system that‟s works on asynchronous 

architecture.  
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